Gas tungsten arc welding of direct quenched wear resistant steel to plain carbon steel and evaluation of its microstructure and wear properties
Authors
Abstract:
In this research, the dissimilar welding of St52 plain carbon steel to W400 wear resistant steel and its effect on the microstructure and wear properties of the wear resistant steel was investigated. The wear resistant steel was produced via direct quenching with nominal hardness of 400 HB. Gas tungsten arc welding was used for joining process. The results showed that welding led to hardness reduction, wear rate increase and also significant changes in microstructure of the heat affected zone of the wear resistant steel. According to the results, by increasing the heat input for about 9%, the hardness and wear rate of the heat affected zone was decreased 8% and increased 250%, respectively. According to the scanning electron microscopy observations the main wear mechanisms of the base metal were adhesion and abrasion. However, the wear mechanisms of the heat affected zone were mainly adhesion and delamination. By increasing the heat input, the delamination was increased significantly.
similar resources
Evolution of Microstructure and Mechanical Properties of Gas Tungsten Arc Welding of Super Duplex Stainless Steel UNSS32750
In this study the microstructure and mechanical properties of super duplex stainless steel UNS S32750 welding was studied. For this purpose, the method of gas tungsten arc and filler metal AWS ER2594 with a diameter of 4.2 mm was used. In order to investigate the microstructure light microscopy and electron microscopy equipped with backscatter electron diffraction were used. Mechanical properti...
full textEvolution of Microstructure and Mechanical Properties of Gas Tungsten Arc Welding of Super Duplex Stainless Steel UNSS32750
In this study the microstructure and mechanical properties of super duplex stainless steel UNS S32750 welding was studied. For this purpose, the method of gas tungsten arc and filler metal AWS ER2594 with a diameter of 4.2 mm was used. In order to investigate the microstructure light microscopy and electron microscopy equipped with backscatter electron diffraction were used. Mechanical properti...
full textCladding of stellite composite on carbon steel by gas tungsten arc welding (GTAW)
This paper deals with the investigation of the microstructure and hardness of steel samples cladded with satellite 6-WC composites by using gas tungsten arc welding (GTAW) process. For this purpose, steel samples were coated with unreinforced and reinforced stellite (by 20, 30 and 40 wt.% WC). The cladded samples were evaluated by metallographic studies, microhardness measurement and X-ray diff...
full textMicrostructure and mechanical properties of similar and dissimilar welding joints of weathering steel and plain carbon steel by GMAW with CO2 shielding gas
The welding joints were investigated due to the significance of similar welding of Corten A weathering steel and its dissimilar welding with St12 plain carbon steel in industrial applications. The gas metal arc welding (GMAW) technique with carbon dioxide shielding gas was utilized in the present work. The welding process comprised current and voltage control, welding wire injection rate, shiel...
full textMicrostructure and mechanical properties of similar and dissimilar welding joints of weathering steel and plain carbon steel by GMAW with CO2 shielding gas
The welding joints were investigated due to the significance of similar welding of Corten A weathering steel and its dissimilar welding with St12 plain carbon steel in industrial applications. The gas metal arc welding (GMAW) technique with carbon dioxide shielding gas was utilized in the present work. The welding process comprised current and voltage control, welding wire injection rate, shiel...
full textMy Resources
Journal title
volume 4 issue 2
pages 13- 22
publication date 2019-01
By following a journal you will be notified via email when a new issue of this journal is published.
No Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023